Lymphotoxin-sensitive microenvironments in homeostasis and inflammation
نویسندگان
چکیده
Stromal cell microenvironments within lymphoid tissues are designed to support immune cell homeostasis and to regulate ongoing immune responses to pathogens. Such stromal cell networks have been best characterized within lymphoid tissues including the spleen and peripheral lymph nodes, and systems for classifying stromal cell phenotypes and functions are emerging. In response to inflammation, stromal cell networks within lymphoid tissues change in order to accommodate and regulate lymphocyte activation. Local inflammation in non-lymphoid tissues can also induce de novo formation of lymphoid aggregates, which we term here "follicle-like structures." Of note, the stromal cell networks that underpin such follicles are not as well characterized and may be different depending on the anatomical site. However, one common element that is integral to the maintenance of stromal cell environments, either in lymphoid tissue or in extra-lymphoid sites, is the constitutive regulation of stromal cell phenotype and/or function by the lymphotoxin (LT) pathway. Here we discuss how the LT pathway influences stromal cell environments both in homeostasis and in the context of inflammation in lymphoid and non-lymphoid tissues.
منابع مشابه
Tumor necrosis factor superfamily in innate immunity and inflammation.
The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor-ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFR...
متن کاملLymphotoxin beta receptor-dependent control of lipid homeostasis.
Hyperlipidemia, one of the most important risk factors for coronary heart disease, is often associated with inflammation. We identified lymphotoxin (LT) and LIGHT, tumor necrosis factor cytokine family members that are primarily expressed on lymphocytes, as critical regulators of key enzymes that control lipid metabolism. Dysregulation of LIGHT expression on T cells resulted in hypertriglycerid...
متن کاملTissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis.
Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical ...
متن کاملManipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway.
Reticular networks in lymphoid organs play critical roles in the organization of local microenvironments. A number of these elements are maintained by continual signaling through the lymphotoxin system. Evaluation of the lymphotoxin (LT) pathway in primates using a fusion protein decoy provides a unique opportunity to assess modulation of splenic microenvironments in a species with considerably...
متن کاملLymphotoxin a-dependent and -independent signals regulate stromal organizer cell homeostasis during lymph node organogenesis.
Lymph nodes provide specialized stromal microenvironments that support the recruitment and organization of T cells and B cells, enabling them to effectively participate in immune responses. While CD4(+)3(-) lymphoid tissue inducer cells (LTic's) are known to play a key role in influencing lymph node (LN) development, the mechanisms that regulate the development of stromal organizer cells are un...
متن کامل